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Abstract: Background: The sustainable use of HAART within the sub-Saharan and other developing world settings faces 

the emerging challenge of drug resistance. Nucleoside reverse transcriptase inhibitors (NRTI) form the backbone of 

HAART and preserving their “antiviral efficacy” is thus critical to sustainable HAART use. 

Methods: A systematic review of the “mechanisms of evolution” of resistance to NRTI at the HIV genome level, and the 

phenotypic manifestations on drug pharmacokinetics was done. 

Conclusion: This paper provides an evidence based account of how the knowledge of pharmacogenomics may be ex-

ploited to tackle NRTI resistance within limited resource. 
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INTRODUCTION 

 The highest burden of the human immunodeficiency vi-

rus (HIV) epidemic is concentrated in the sub-Saharan re-

gion. Over 70% of all global HIV infections have been found 

to occur here [1]. Despite the earlier policy and patent con-

troversies surrounding the use of highly active antiretroviral 

therapy (HAART) within this setting, HAART has widely 

gained application here [2]. This access to HAART can be 

mainly attributed to several advocacy and funding avenues 

[2-4]. Specifically, the World Bank and its global partners, in 

particular, with commitment by the G8, have ensured that 

several countries within this setting can meet the WHO 3’by 

5” target of treating 3 million by 2005 [3,4]. Through Initia-

tive such as the global Fund to Fight AIDS, TB and Malaria-

GFATM, the President's Emergency Plan for AIDS Relief 

(PEPFAR) and several others, about 2 million persons living 

with HIV/AIDS are accessing HAART today [2, 3]. The 

evolution of resistance however poses one of the biggest 

challenges to HAART use here. Developing mechanisms to 

curtail its growing prevalence amidst the existent limited 

resources may be more cost effective and realistic than wait-

ing to deal with an outright “outbreak” of resistant virus. 

One way to do so is by ensuring that all persons living with 

HIV or the Acquired Immunodeficiency Syndrome (AIDS): 
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PLWHA on HAART take their medications in the right dos-

ages and at the right time. This is because non compliance is 

one of the major factors that influence the evolution of resis-

tance [5]. The second option would be to develop the neces-

sary capacity for monitoring drug sensitivity and profiling 

resistance. The latter option has however remained widely 

unavailable at several of the HIV/AIDS treatment and care 

centers- mainly due to the high costs that are involved in 

phenotyping and genotyping HIV resistance to HAART [2]. 

To ensure the success of the HAART programs in this set-

ting however, the capacity to deal with resistance to HAART 

is needed as an integral part of the HIV treatment and care 

systems here, emphasizing why global partners in the fight 

against the HIV epidemic should consider a focused look at 

the subject. The third option that is widely explored else-

where but is still limited in the developing world is the use of 

“salvage regimens” [6]. 

 Amidst the above available options, until such a time 

when capacity for resistance profiling and access to equally 

diverse options for “salvage therapy” become readily avail-

able in this setting, it is the responsibility of both the 

PLWHA and the respective primary care physicians to work 

together so as to preserve current first line HAART options 

from resistance. Several compliance studies have shown that 

sub-Saharan PLWHA are doing their part relatively well in 

terms of compliance to HAART [5]. 

 Physicians, through knowledge of HAART pharmacoge-

nomics, specifically, the effects of individual resistance phe-

notypes on overall HAART pharmacodynamics (PD) and 
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pharmacokinetics (PK), may equally play a significant part 

in setting a barrier to the evolution of resistance to first line 

HAART options. By so doing, they can as well devise vi-

rologically effective options for “salvage therapy” from the 

limited options of HAART available. Today, according to 

the International AIDS Society, the ideal combination of 

HAART should comprise a backbone of two NRTIs plus 

either a Protease Inhibitor or a Non-NRTI (NNRTI). NRTIs 

thus form a significant component of HAART whose func-

tion should be jealously “guarded” to ensure sustainable use 

of any selected HAART regimen or combination. This paper 

aims to examine how “evolution of resistant phenotypes and 

genotypes to NRTI (and NNRTI) influences the general PD 

and PK of HAART”. From that examination, we hope to 

provide an evidence based account of how knowledge of this 

“pharmacogenomics” may be applied in resource limited 

setting to prevent or delay the evolution of resistance to 

HAART while maintaining virologic suppression among 

those with identified resistance. 

GENERAL CONCEPT OF HOW RESISTANCE 
EMERGES IN HAART AND ITS IMPLICATION ON 

FIGHTING RESISTANCE TO HAART 

1. The Evolution of Resistance to HAART: A Genomic 

Perspective 

 Drug resistance to HAART in general results from muta-

tions in the viral genome [6]. Specifically, those mutations 

associated to HAART resistance are localized on those genes 

that encode the molecular targets of antiretroviral drugs. 

Hence resistance to NRTI/NNRTI, Protease inhibitors (PIs) 

and fusion inhibitors can be localized on reverse tran-

scriptase, protease, and glycoprotein41 respectively. Well as 

these mutations have been noted to occur spontaneously in 

the HIV genome, and resistant phenotypes exist even prior to 

the use of HAART (implying that the use of HAART in it-

self does not select for resistant virus)[6], it has equally been 

observed that the propagation and maintenance of these re-

sistant or mutant viruses is largely favored by sub-optimal 

plasma inhibitory concentrations (PIC) of the HAART com-

ponent to which resistance exists. The latter serves to kill off 

the non resistant viruses (which are still susceptible to the 

combination of HAART in use) and leaves the mutant to 

shrive. In general, for any organism or pathogen- the muta-

tion rate is a dependant on three factors: (a) Presence of an 

outside selective pressure-which for microbes like HIV is 

often a drug that is present at lower than minimal inhibitory 

or lethal dosages to the microbe (b) frequency of replication 

or duplication of the microbe and (c) efficacy of the proof 

reading mechanisms of the process of DNA or RNA synthe-

sis during replication. Because of the rapid replication rate of 

HIV (where the virus produces 1010 billion copies every 24 

hours), and the error prone reading mechanism of the RNA 

polymerase relative to its DNA counterpart (DNA polym-

erase), HIV is inherently highly susceptible to variations in 

the genotypes; meaning that even the slightest pressure from 

a misuse of drug combinations is likely to result into the evo-

lution of resistance due to an” inherent narrow viral resis-

tance barrier” [6, 7]. 

2. Phenotypic Manifestation of Resistant Genotypes and 
the Mechanisms of Resistance 

 Most NRTI are analogues of deoxynucleoside triphos-

phates (dNTs) that are integrated into the DNA (or RNA) 

chain in the same way that normal dNTs are during the proc-

esses of DNA or RNA synthesis. However, because of al-

terations in the configuration of the NRTIs, NRTIs can not 

be processed further by the DNA or RNA synthesizing en-

zymes_ (DNA polymerase and RNA polymerase respec-

tively). This results into premature termination of the nucleo-

tide chain synthesis, thus respective cell proliferation [6]. 

NRTIs specifically target function of viral reverse tran-

scriptase enzyme. Two Mechanism of resistance against re-

verse transcriptase inhibitors are known. These are: 

1. Discrimination: This occurs when the reverse tran-

scriptase (RT) enzyme develops the ability to evade 

binding of the NRTI or NNRTI but retains its ability 

to bind the natural deoxynucleoside triphosphates 

substrates. Point mutations such as K65R and M184V 

are associated with this phenotype [6]. 

2. Pyrophosphoroylation: This involves an increased 

phosphorolytic removal of the chain terminating 

NRTI from the 3’end of the primer after it has been 

integrated into viral DNA strand. This mechanism, 

that is also called “primer unblocking” or “excision” 

is mainly associated with thymidine analogue muta-

tions (TAMs) selected for by Stavudine and Zi-

dovudine (M41L, T215Y/F and K218Q/E) [6,7]. 

 Although different drugs select for different mutations 

associated with different resistance profiles or mechanisms, 

what is of clinical significance in dealing with resistant virus 

is how the evolution of resistant phenotypes may be avoided, 

or dealt with. 

 To do so, we find that one needs to appreciate the phar-

macogenomics of HAART resistance, particularly (1) what 

mutations (genotypes) are associated with misuse of particu-

lar NRTIs (or their combinations) and (2) the possible bene-

ficial effects of those resultant phenotypes on the PK and PD 

of other HAART components. 

PHENOTYPIC MANIFESTATIONS OF RESISTANT 
GENOTYPES ASSOCIATED WITH SPECIFIC NRTI 

(OR COMBINATION OF NRTIS) OF RELEVANCE 

TO DEALING WITH RESISTANCE IN RESOURCE 
LIMITED SETTINGS 

 Three main “combinations of two “NRTIs” have gained 

wide usage globally as backbones in HAART; and are 

equally used within the sub-Saharan setting. These are Teno-

fovir/Emtricitabine (Truvuda), Zidovudine/lamivudine 

(combivir) and Abacavir/lamivudine (Kivexa)[2]. Most other 

combinations used as backbones involve an interchange of 

the individual drugs in these three. When virologic failure is 

observed in patients using any of these, it may be due to re-

sistance to a single component of HAART or all. To note is 

that: some drug combinations are associated with “much 

narrower resistance barrier than others. In addition, while the 

occurrence of a “single mutation” may suffice to confer re-

sistance to some drugs that comprise HAART regimens such 



80    The Open AIDS Journal, 2008, Volume 2 Wayengera et al. 

as is the case with M184V/L74V for lamivudine (3TC) and 

Emtricitabine (FTC); other drugs such as Zidovudine (AZT) 

and Stavudine (d4T) have a broader barrier to resistance and 

an accumulation of “resistance mutations” must occur for 

phenotypic resistance to manifest [6]. In any patient on a 

specified combination of HAART, various populations of 

mutant viruses with differing susceptibility to individual 

drug components of the HAART regimens co-exist. Some of 

these mutant genotypes such as several Thymidine Analogue 

Mutations (TAMs) may confer resistances to all members of 

the group as related above, while some resistant genotypes 

are only associated with resistance to a single member of the 

group such as the signature mutations of Tenofovir(K65R); 

with limitations the two mutations M184V and L74V that 

are often associated with sub-optimal use of and lamivudine 

and Abacavir [8-10]. Specifically, while the insertions in 

codon 69 and 70(T69) has been found to be associated with a 

high resistance to ZDV, d4T, ddI, ABC and TDF [11-13], 

the mutation in the conserved domain of RT-Q151M; whose 

occurrence has been associated with two drug therapy_ dida-

nosine with either Zidovudine or Stavudine( which is a rare 

scenario in modern HAART combining 3 drugs) confers 

resistance to all NRTIs [13]. Some mutations associated with 

resistance to certain drugs such as the K65R and M184V 

mutations for Tenofovir and Lamivudine/Abacavir respec-

tively have been found to confer an increased susceptibility 

to other NRTIs like Zidovudine [11,12]. In other words, 

while predominance of some mutants associated with resis-

tance to a given single member of the NRTI-backbone con-

fers resistance to all members of the group, some mutants are 

associated with phenotypic manifestations that confer an 

increased susceptibility to another NRTI. The significance of 

these points above when dealing with clinical resistance to 

HAART in a resource limited setting is discussed below. 

EXPLOITING NRTI RESISTANCE PHARMACOGE-
NOMICS TO PREVENT THE EVOLUTION OR DEAL 

WITH EXISTENT NRTI RESISTANCE IN A RE-

SOURCE POOR SETTINGS 

 Marcelin AG et al. [6] and others have provided a critical 

review of the phenotypic manifestations of NRTI resistance 

genotypes [9-18], the fitness between mutant and wild type 

viruses [6], and inherent “resistance barriers” for individual 

NRTIs [9-18]. Specifically, the review by Marcelin AG et al. 

[6] reveals a number insight into the beneficial “pharma-

cokinetics” of NRTI resistance which may be applied to pro-

long HAART sustainability in resource limited settings by 

improving the general outcome of NRTIs. These benefits are 

and can be accrued as detailed in the three scenarios here. 

 First, using high resistance barrier first line combinations 

(while avoiding those with low resistance barriers); it is pos-

sible to delay the emergence of resistant mutants to an 

HAART combination. This serves the purpose of preserving 

future options. For instance, lets consider the 3TC/FTC plus 

thymidine analogues scenario. It has been noted that the sys-

tematic use of 3TC/FTC plus thymidine analogues have the 

advantage of low resistance mutations and associated vi-

rologic failure, and its use may serve to preserve future op-

tions. In so doing, there is however need to avoid prolonged 

viral replication by using either a NNRTI or Protease inhibi-

tor (PI) in addition [2, 9]. Another scenario is that of 

ABC/3TC plus NRTI with NNRTI or PI. This combination 

of NRTIs similarly serves the purpose of preserving future 

options as the evolution of the M184V resistance mutation to 

Abacavir(ABC) serves to increase susceptibility to 

NRTIs(specifically Zidovudine) while L74V mutation com-

monly associated with lamivudine misuse only affects dida-

nosine(ddI) among the NRTIs. The lowest mutation rates 

have been observed when this backbone combination of 

ABC/3TC is used in combination with PIs [14]. Lastly, 

avoiding didanosine with other thymidine analogues is criti-

cal, since when thymidine analogues such as Zidovudine 

(ZDV) and Stavudine (d4T) are used in combination with 

didanosine, a high rate of thymidine analogue mutations 

(TAMs) is seen with failure, many of which confer cross 

resistance to other NRTIs. When used in isolation, dida-

nosine selects for L74V mutation and more rarely the K65R 

[6, 15-17]. While the presence of L74V only affects ddI, 

when associated with other mutations such as TAMS, L74V 

confers resistance to TDF and ABC [6]. 

 Second, by exploring interactive co-potentiation that 

some mutants associated with resistance to a particular drug 

confer to in situ bioavailability and viral susceptibility to 

another, it is possible to enhance viral suppression. One such 

example is use of TDF with NRTIs. When Tenofovir (TDF) 

is used in a patient on NRTIs in whom prior TAMs have 

evolved, the TDF signature mutation K65R emerges [10-13]. 

However, K65R has the antagonistic effect of reducing the 

excision process induced by TAMs (thus associated resis-

tance to NRTIs). In addition, biochemical studies have 

shown a similar antagonism between K65R and L74V that is 

correlated with a poor ability of the mutant viruses with the 

double RT resistance mutations “K65R+L74V” to use natu-

ral nucleosides relative to wild types [11-13]. As another 

example, in using 3TC/FTC with Zidovudine, it has been 

shown that changes in the reverse transcriptase enzyme asso-

ciate with the resistant mutation to Lamivudine increases the 

fidelity and diminished processivity of the viral reverse tran-

scriptase enzyme), an effect that serves to decrease resistant 

viral fitness [18]. When present with Zidovudine associated 

mutations, M184V however has been found to equally serve 

to partially restore Zidovudine (ZDV) efficacy and reduce 

the emergence of TAMs [18, 19]. This combination of re-

duced “resistant virus fitness” and increased susceptibility to 

ZDV restores virologic efficacy of the HAART combination 

containing 3TC/FTC plus Zidovudine. Lastly, since exposure 

to sub-optimal plasma inhibitory concentrations of HAART 

is the main exogenous selective pressure leading to evolution 

of resistant mutants and wild type virus is relatively more fit 

than mutant virus in the absence of HAART induced inhibi-

tion or suppression, removing “drug” pressure will serve to 

create an environment in which wild type virus out compete 

mutant (resistant) virus_ “survival of fittest” [6]. Drug holi-

days may thus have a role to play in the management of per-

sons living with HIV/AIDS who develop resistance to major 

NRTI options for HAART combinations within resource 

limited settings [6]. 
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LIMITATIONS OF THESE GUIDELINES: AN UN-
CERTAIN FUTURE 

 Most of the conclusions made here have been drawn 

from clinical trial observations [2, 6, 9-18]. With a prolonged 

use of HAART and evolution of patterns of resistance not 

currently documented; the standard of care is bound to 

change. A continued surveillance of the prevailing patterns 

of resistance mutations, say at a central laboratory, may 

serve to inform the decision on whether or not these guide-

lines can still be “generally” applicable. 

WAY FORWARD 

 Amidst the general lack of resistance phenotyping and 

genotyping, and limited options for salvage therapy, a mini-

mal but clinically relevant knowledge of the “beneficial in-

teractive phenotypic manifestations of NRTI resistance 

genotypes, the variation in fitness between mutant and wild 

type viruses, and inherent “resistance barriers” for individual 

NRTIs” is critical for primary health care providers using 

HAART to treat and care for persons living with HIV or 

AIDS (PLWHA) in resource poor settings to ensure a sus-

tainable use of HAART. A summary of the forwarded op-

tions for dealing with NRTI resistance in resource poor set-

tings is shown in Table 1. 

Table 1.  

 

A. Using high resistance barrier first line combinations (while avoid-

ing those with low resistance) to delay the emergence of resistant 

mutants to an HAART combination 

1. Using Lamivudine/ Emtricitabine plus a thymidine analogue to pre-
serving future option 

2. Using Abacavir/Lamivudine with NRTI plus NNRTI or PI 

3. Avoiding Abacavir/Lamivudine (Kivexa) plus Tenofovir 

4. Avoiding Zidovudine analogues with didanosine 

B. Exploring interactive co-potentiation that some mutants associ-

ated with resistance to a particular drug confer to in situ bioavail-

ability and viral susceptibility to another 

1. Tenofovir with NRTIs other than abacavir/lamivudine 

2. Lamivudine/Emtricitabine with Zidovudine 

C. Drug holidays for selective elimination of resistant virus 

 

CONCLUSION 

 Knowledge of the pharmacogenomics of NRTI may be 

explored to prevent resistance in resource limited settings. 
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